What I have talked in Recitation 6: Review of what you have learned so far

Fei Qi

Rutgers University fq15@math.rutgers.edu

March 5, 2014

Disclaimer¹

- These slides are designed exclusively for students attending section 1, 2 and 3 for the course 640:244 in Fall 2013. The author is not responsible for consequences of other usages.
- These slides may suffer from errors. Please use them with your own discretion since debugging is beyond the author's ability.

Standard form

Standard form

$$y'(t) + p(t)y(t) = g(t)$$

Standard form

$$y'(t) + p(t)y(t) = g(t)$$

Integrating factor

Standard form

$$y'(t) + p(t)y(t) = g(t)$$

Integrating factor

$$\mu(t) = e^{\int p(t)dt}$$

Standard form

$$y'(t) + p(t)y(t) = g(t)$$

Integrating factor

$$\mu(t) = e^{\int p(t)dt}$$

General solution

Standard form

$$y'(t) + p(t)y(t) = g(t)$$

Integrating factor

$$\mu(t) = e^{\int p(t)dt}$$

General solution

$$y(t) = \frac{\int \mu(t)g(t)}{\mu(t)}.$$

Standard form

$$y'(t) + p(t)y(t) = g(t)$$

Integrating factor

$$\mu(t) = e^{\int p(t)dt}$$

General solution

$$y(t) = \frac{\int \mu(t)g(t)}{\mu(t)}.$$

Please find examples in older slides.

Standard form

$$y'(t) + p(t)y(t) = g(t)$$

Integrating factor

$$\mu(t) = e^{\int p(t)dt}$$

General solution

$$y(t) = \frac{\int \mu(t)g(t)}{\mu(t)}.$$

 Please find examples in older slides. Also make sure you learn how to check your answers.

How it looks like

$$\frac{dy}{dx} = M(x)N(y).$$

How it looks like

$$\frac{dy}{dx} = M(x)N(y).$$

Organize it as

$$\frac{dy}{N(x)} = M(x)dx$$

How it looks like

$$\frac{dy}{dx} = M(x)N(y).$$

Organize it as

$$\frac{dy}{N(x)} = M(x)dx$$

and then integrate.

How it looks like

$$\frac{dy}{dx} = M(x)N(y).$$

Organize it as

$$\frac{dy}{N(x)} = M(x)dx$$

and then integrate.

Please find examples in older slides.

An ODE

An ODE

$$M(x,y) + N(x,y)y' = 0$$

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$,

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$, then there exists a function $\Psi(x,y)$

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$, then there exists a function $\Psi(x,y)$ such that

$$\Psi_{x}(x,y)=M(x,y),$$

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$, then there exists a function $\Psi(x,y)$ such that

$$\Psi_{\mathsf{x}}(\mathsf{x},\mathsf{y}) = \mathsf{M}(\mathsf{x},\mathsf{y}), \Psi_{\mathsf{y}}(\mathsf{x},\mathsf{y}) = \mathsf{N}(\mathsf{x},\mathsf{y}).$$

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$, then there exists a function $\Psi(x,y)$ such that

$$\Psi_{x}(x,y) = M(x,y), \Psi_{y}(x,y) = N(x,y).$$

So if the ODE above is exact,

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$, then there exists a function $\Psi(x,y)$ such that

$$\Psi_{\mathsf{x}}(\mathsf{x},\mathsf{y}) = \mathsf{M}(\mathsf{x},\mathsf{y}), \Psi_{\mathsf{y}}(\mathsf{x},\mathsf{y}) = \mathsf{N}(\mathsf{x},\mathsf{y}).$$

 So if the ODE above is exact, then one can express its implicit solution as

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$, then there exists a function $\Psi(x,y)$ such that

$$\Psi_{\mathsf{x}}(\mathsf{x},\mathsf{y}) = \mathsf{M}(\mathsf{x},\mathsf{y}), \Psi_{\mathsf{y}}(\mathsf{x},\mathsf{y}) = \mathsf{N}(\mathsf{x},\mathsf{y}).$$

 So if the ODE above is exact, then one can express its implicit solution as

$$\Psi(x,y(x))=C.$$

An ODE

$$M(x,y) + N(x,y)y' = 0$$

is called exact if

$$M_y = N_x$$

• Generally if there are two functions M(x,y) and N(x,y) such that $M_y = N_x$, then there exists a function $\Psi(x,y)$ such that

$$\Psi_{\mathsf{x}}(\mathsf{x},\mathsf{y}) = \mathsf{M}(\mathsf{x},\mathsf{y}), \Psi_{\mathsf{y}}(\mathsf{x},\mathsf{y}) = \mathsf{N}(\mathsf{x},\mathsf{y}).$$

 So if the ODE above is exact, then one can express its implicit solution as

$$\Psi(x,y(x))=C.$$

So it suffices to recover the $\Psi(x,y)$ from M(x,y) and N(x,y).

• Since $\Psi_x(x,y) = M(x,y)$,

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x,

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

• Since $\Psi_y(x,y) = N(x,y)$,

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

• Since $\Psi_y(x,y) = N(x,y)$, by taking partial derivative to y,

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

• Since $\Psi_y(x,y) = N(x,y)$, by taking partial derivative to y, one can determine $\varphi'(y)$ and

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

• Since $\Psi_y(x,y) = N(x,y)$, by taking partial derivative to y, one can determine $\varphi'(y)$ and thus $\varphi(y)$.

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

• Since $\Psi_y(x,y) = N(x,y)$, by taking partial derivative to y, one can determine $\varphi'(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi'(y)$.

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

- Since $\Psi_y(x,y) = N(x,y)$, by taking partial derivative to y, one can determine $\varphi'(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi'(y)$.
- Then with the so obtained $\Psi(x, y)$,

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y)=\int M(x,y)dx+\varphi(y),$$

- Since $\Psi_y(x,y) = N(x,y)$, by taking partial derivative to y, one can determine $\varphi'(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi'(y)$.
- Then with the so obtained $\Psi(x,y)$, the solution to the exact ODE would be

• Since $\Psi_x(x,y) = M(x,y)$, by integrating with respect to x, one has

$$\Psi(x,y) = \int M(x,y)dx + \varphi(y),$$

- Since $\Psi_y(x,y) = N(x,y)$, by taking partial derivative to y, one can determine $\varphi'(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi'(y)$.
- Then with the so obtained $\Psi(x, y)$, the solution to the exact ODE would be

$$\Psi(x,y)=C$$

In case

$$\frac{M_y - N_x}{N}$$
 is independent of y ,

In case

$$\frac{M_y - N_x}{N}$$
 is independent of y ,

you can solve the following ODE

In case

$$\frac{M_y - N_x}{N}$$
 is independent of y ,

you can solve the following ODE

$$\frac{\mu'(x)}{\mu(x)} = \frac{M_y - N_x}{N}$$

In case

$$\frac{M_y - N_x}{N}$$
 is independent of y ,

you can solve the following ODE

$$\frac{\mu'(x)}{\mu(x)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

In case

$$\frac{M_y - N_x}{N}$$
 is independent of y ,

you can solve the following ODE

$$\frac{\mu'(x)}{\mu(x)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

• Multiply $\mu(x)$ to your original ODE,

In case

$$\frac{M_y - N_x}{N}$$
 is independent of y ,

you can solve the following ODE

$$\frac{\mu'(x)}{\mu(x)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

ullet Multiply $\mu(x)$ to your original ODE, you will get a new ODE

In case

$$\frac{M_y - N_x}{N}$$
 is independent of y ,

you can solve the following ODE

$$\frac{\mu'(x)}{\mu(x)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

• Multiply $\mu(x)$ to your original ODE, you will get a new ODE that is exact.

In case

$$-\frac{M_y - N_x}{M}$$
 is independent of x ,

In case

$$-\frac{M_y - N_x}{M}$$
 is independent of x ,

you can solve the following ODE

In case

$$-\frac{M_y - N_x}{M}$$
 is independent of x ,

you can solve the following ODE

$$\frac{\mu'(y)}{\mu(y)} = \frac{M_y - N_x}{N}$$

In case

$$-\frac{M_y-N_x}{M} is independent of x,$$

you can solve the following ODE

$$\frac{\mu'(y)}{\mu(y)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

In case

$$-\frac{M_y-N_x}{M} is independent of x,$$

you can solve the following ODE

$$\frac{\mu'(y)}{\mu(y)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

• Multiply $\mu(x)$ to your original ODE,

In case

$$-\frac{M_y - N_x}{M}$$
 is independent of x ,

you can solve the following ODE

$$\frac{\mu'(y)}{\mu(y)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

ullet Multiply $\mu(x)$ to your original ODE, you will get a new ODE

In case

$$-\frac{M_y - N_x}{M}$$
 is independent of x ,

you can solve the following ODE

$$\frac{\mu'(y)}{\mu(y)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

• Multiply $\mu(x)$ to your original ODE, you will get a new ODE that is exact.

In case

$$-\frac{M_y - N_x}{M}$$
 is independent of x ,

you can solve the following ODE

$$\frac{\mu'(y)}{\mu(y)} = \frac{M_y - N_x}{N}$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE, you will get a new ODE that is exact.
- Please find example problems in earlier slides.

How it looks like,

How it looks like,

$$ay'' + by' + cy = 0,$$

How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

• Characteristic equation

• How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

• Characteristic equation

$$ar^2 + br + c = 0.$$

• How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

• Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real,

How it looks like.

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

• Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real, then the general solution is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$
.

• How it looks like.

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real, then the general solution is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

• If $r_1 \neq r_2$ and both are complex,

How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real, then the general solution is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

• If $r_1 \neq r_2$ and both are complex, write $r_1 = \lambda + i\mu, r_2 = \lambda - i\mu$,

• How it looks like.

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real, then the general solution is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

• If $r_1 \neq r_2$ and both are complex, write $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu$, then the general solution is

$$y(t) = e^{\lambda t} (C_1 \cos \mu t + C_2 \sin \mu t).$$

How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real, then the general solution is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

• If $r_1 \neq r_2$ and both are complex, write $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu$, then the general solution is

$$y(t) = e^{\lambda t} (C_1 \cos \mu t + C_2 \sin \mu t).$$

• If $r_1 = r_2 = r$

How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real, then the general solution is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$
.

• If $r_1 \neq r_2$ and both are complex, write $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu$, then the general solution is

$$y(t) = e^{\lambda t} (C_1 \cos \mu t + C_2 \sin \mu t).$$

• If $r_1 = r_2 = r$ (must be real),

How it looks like,

$$ay'' + by' + cy = 0, a, b, c$$
 real numbers

Characteristic equation

$$ar^2 + br + c = 0.$$

Denote by r_1 , r_2 the two roots.

• If $r_1 \neq r_2$ and both are real, then the general solution is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

• If $r_1 \neq r_2$ and both are complex, write $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu$, then the general solution is

$$y(t) = e^{\lambda t} (C_1 \cos \mu t + C_2 \sin \mu t).$$

• If $r_1 = r_2 = r$ (must be real), then the general solution is

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}.$$

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

• Principle of superposition:

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

• Principle of superposition: If functions $y_1(t)$, $y_2(t)$ are solutions to this ODE,

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

• Principle of superposition: If functions $y_1(t)$, $y_2(t)$ are solutions to this ODE, then for any number A, B,

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

• Principle of superposition: If functions $y_1(t)$, $y_2(t)$ are solutions to this ODE, then for any number A, B,

$$Ay_1(t) + By_2(t)$$

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

• Principle of superposition: If functions $y_1(t)$, $y_2(t)$ are solutions to this ODE, then for any number A, B,

$$Ay_1(t) + By_2(t)$$

is a solution.

• In addition,

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t,

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0,

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS

• In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

$$Ay_1(t) + By_2(t)$$

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

$$Ay_1(t) + By_2(t)$$

for some number A, B.

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

$$Ay_1(t) + By_2(t)$$

for some number A, B.

In other words,

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

$$Ay_1(t) + By_2(t)$$

for some number A, B.

• In other words, $y_1(t), y_2(t)$ are linearly independent to each other

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

$$Ay_1(t) + By_2(t)$$

for some number A, B.

• In other words, $y_1(t)$, $y_2(t)$ are linearly independent to each other and forms a fundamental set of solutions.

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

$$Ay_1(t) + By_2(t)$$

for some number A, B.

• In other words, $y_1(t), y_2(t)$ are linearly independent to each other and forms a fundamental set of solutions. The general solution of this ODE

In addition, if the Wronskian

$$W(y_1(t), y_2(t)) = y_1(t)y_2'(t) - y_2(t)y_1'(t),$$

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of this ODE looks like

$$Ay_1(t) + By_2(t)$$

for some number A, B.

• In other words, $y_1(t)$, $y_2(t)$ are linearly independent to each other and forms a fundamental set of solutions. The general solution of this ODE would then be

$$y(t) = C_1 y_1(t) + C_2 y_2(t).$$

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

• Therefore, in order to solve this equation,

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

• Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$,

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE,

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book,

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$y_1(t)v''(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

Treating it as an ODE concerning v'(t),

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$y_1(t)v''(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

Treating it as an ODE concerning v'(t), you can solve it by separation of variable.

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$y_1(t)v''(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

Treating it as an ODE concerning v'(t), you can solve it by separation of variable. (Note that $v''(t)/v'(t) = (\ln(v'(t))')$

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$y_1(t)v''(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

Treating it as an ODE concerning v'(t), you can solve it by separation of variable. (Note that $v''(t)/v'(t) = (\ln(v'(t))')$

• Then you get v'(t)

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$y_1(t)v''(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

Treating it as an ODE concerning v'(t), you can solve it by separation of variable. (Note that $v''(t)/v'(t) = (\ln(v'(t))')$

• Then you get v'(t) and by integration you get v(t)

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$y_1(t)v''(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

Treating it as an ODE concerning v'(t), you can solve it by separation of variable. (Note that $v''(t)/v'(t) = (\ln(v'(t))')$

• Then you get v'(t) and by integration you get v(t) and thus $y_2(t) = v_1(t)y_1(t)$

Standard form

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_1(t)$ and $y_2(t)$.
- In particular, if you already know one solution $y_1(t)$, it suffices to use reduction of order to find another $y_2(t)$.
- Let $y_2(t) = v(t)y_1(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$y_1(t)v''(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

Treating it as an ODE concerning v'(t), you can solve it by separation of variable. (Note that $v''(t)/v'(t) = (\ln(v'(t))')$

• Then you get v'(t) and by integration you get v(t) and thus $y_2(t) = v_1(t)y_1(t)$ and thus the general solution $y(t) = C_1y_1(t) + C_2y_2(t)$.

The End