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Disclaimer

@ These slides are designed exclusively for students attending section 1,
2 and 3 for the course 640:244 in Fall 2013. The author is not
responsible for consequences of other usages.

@ These slides may suffer from errors. Please use them with your own
discretion since debugging is beyond the author’s ability.
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First Order Linear ODEs

e Standard form
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e Standard form
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First Order Linear ODEs

Standard form

y'(t) + p(t)y(t) = g(t)

o Integrating factor
u(t) = el p(t)dt
@ General solution
o) L)
p(t)

Please find examples in older slides.
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First Order Linear ODEs

Standard form

y'(t) + p(t)y(t) = g(t)

Integrating factor
u(t) = el p(t)dt

General solution

(1) = fuﬁ(zg)f(t)‘

Please find examples in older slides. Also make sure you learn how to
check your answers.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 3/13



Separable ODEs

@ How it looks like
—— = M()N(y).
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Separable ODEs

@ How it looks like

dy
o = MOON(y).
o Organize it as
dy
N M(x)dx

and then integrate.

@ Please find examples in older slides.
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Exact ODEs and those can-be-made-exact ODEs

e An ODE
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M(x,y)+ N(x,y)y' =0
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Exact ODEs and those can-be-made-exact ODEs

e An ODE
M(x,y)+ N(x,y)y' =0

is called exact if
M, = Ny

@ Generally if there are two functions M(x,y) and N(x, y) such that
M, = N,
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Exact ODEs and those can-be-made-exact ODEs

e An ODE
M(x,y)+ N(x,y)y' =0

is called exact if
M, = Ny

@ Generally if there are two functions M(x,y) and N(x, y) such that
M, = N,, then there exists a function V(x, y)
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Exact ODEs and those can-be-made-exact ODEs

e An ODE
M(x,y)+ N(x,y)y' =0

is called exact if
M, = Ny

@ Generally if there are two functions M(x,y) and N(x, y) such that
M, = N,, then there exists a function W(x, y) such that

WX(Xv.y) = M(X,y),
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e An ODE
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Exact ODEs and those can-be-made-exact ODEs

e An ODE
M(x,y)+ N(x,y)y' =0

is called exact if
M, = Ny

@ Generally if there are two functions M(x,y) and N(x, y) such that
M, = N,, then there exists a function W(x, y) such that

WX(X,)/) = I\/I(x,y),\lly(x,y) = N(va)'

@ So if the ODE above is exact, then one can express its implicit
solution as
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Exact ODEs and those can-be-made-exact ODEs

e An ODE
M(x,y)+ N(x,y)y' =0

is called exact if
M, = Ny

@ Generally if there are two functions M(x,y) and N(x, y) such that
M, = N,, then there exists a function W(x, y) such that

WX(X,)/) = I\/I(x,y),\lly(x,y) = N(va)'

@ So if the ODE above is exact, then one can express its implicit
solution as

V(x y(x)) = C.
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Exact ODEs and those can-be-made-exact ODEs

e An ODE
M(x,y)+ N(x,y)y' =0

is called exact if
M, = Ny

@ Generally if there are two functions M(x,y) and N(x, y) such that
M, = N,, then there exists a function W(x, y) such that

WX(X,)/) = I\/I(x,y),\lly(x,y) = N(va)'

@ So if the ODE above is exact, then one can express its implicit
solution as

V(x, y(x)) = C.
So it suffices to recover the W(x, y) from M(x,y) and N(x,y).
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Exact ODEs and those can-be-made-exact ODEs

@ Since V,(x,y) = M(x,y),
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Exact ODEs and those can-be-made-exact ODEs

e Since V,(x,y) = M(x,y), by integrating with respect to x, one has

V(x,y) = / M(x,y)dx + o(y),

@ Since W, (x,y) = N(x, y), by taking partial derivative to y, one can
determine ¢'(y) and thus ¢(y). Note that you don't have to care
about the constant when you integrate ¢'(y).
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Exact ODEs and those can-be-made-exact ODEs

e Since V,(x,y) = M(x,y), by integrating with respect to x, one has

V(x,y) = / M(x,y)dx + o(y),

@ Since W, (x,y) = N(x, y), by taking partial derivative to y, one can
determine ¢'(y) and thus ¢(y). Note that you don't have to care
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Exact ODEs and those can-be-made-exact ODEs

e Since V,(x,y) = M(x,y), by integrating with respect to x, one has

V(x,y) = / M(x,y)dx + o(y),

@ Since W, (x,y) = N(x, y), by taking partial derivative to y, one can
determine ¢'(y) and thus ¢(y). Note that you don't have to care
about the constant when you integrate ¢'(y).

@ Then with the so obtained W(x, y), the solution to the exact ODE
would be
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Exact ODEs and those can-be-made-exact ODEs

e Since V,(x,y) = M(x,y), by integrating with respect to x, one has

V(x,y) = / M(x,y)dx + o(y),

@ Since W, (x,y) = N(x, y), by taking partial derivative to y, one can
determine ¢'(y) and thus ¢(y). Note that you don't have to care
about the constant when you integrate ¢'(y).

@ Then with the so obtained W(x, y), the solution to the exact ODE
would be
V(x,y)=C
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Exact ODEs and those can-be-made-exact ODEs

@ In case Mo — N
y/; Xis independent of y,
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@ In case Y N
y/; Xis independent of y,
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Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7/13



Exact ODEs and those can-be-made-exact ODEs

@ In case Y N
y/; Xis independent of y,

you can solve the following ODE

W) _ My~ N

ey N

to get a factor u(x).
e Multiply u(x) to your original ODE, you will get a new ODE
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Exact ODEs and those can-be-made-exact ODEs

@ In case Y N
y/; Xis independent of y,

you can solve the following ODE

W) _ My~ N

ey N

to get a factor u(x).
e Multiply u(x) to your original ODE, you will get a new ODE that is
exact.
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Exact ODEs and those can-be-made-exact ODEs

@ In case Y N
—%is independent of x,

you can solve the following ODE

to get a factor u(x).

e Multiply u(x) to your original ODE, you will get a new ODE that is
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Exact ODEs and those can-be-made-exact ODEs

@ In case Y N
—%is independent of x,

you can solve the following ODE

to get a factor u(x).

e Multiply u(x) to your original ODE, you will get a new ODE that is
exact.

@ Please find example problems in earlier slides.
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2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,
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@ How it looks like,

ay” + by’ +cy =0, a, b, ¢ real numbers

o Characteristic equation

ar®> + br+c=0.
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2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,

ay” + by’ +cy =0, a, b, ¢ real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
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ay” + by’ +cy =0, a, b, c real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
@ If 1 # rp and both are real, then the general solution is

y(t) = Cret + Gye™t.
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2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,

ay” + by’ +cy =0, a, b, c real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
@ If 1 # rp and both are real, then the general solution is

y(t) = Cret + Gye™t.

@ If 1 # r» and both are complex,
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2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,

ay” + by’ +cy =0, a, b, c real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
@ If 1 # rp and both are real, then the general solution is

y(t) = Cret + Gye™t.

o If 1 # r» and both are complex, write 1 = A+ i, n =X — i,

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 9 /13



2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,

ay” + by’ +cy =0, a, b, c real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
@ If 1 # rp and both are real, then the general solution is

y(t) = Cret + Gye™t.

@ If 1 # r» and both are complex, write 1 = A+ i, = A — iy, then
the general solution is

y(t) = e*(Cy cos pt + Cosin put).
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2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,

ay” + by’ +cy =0, a, b, c real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
@ If 1 # rp and both are real, then the general solution is

y(t) = Cret + Gye™t.

@ If 1 # r» and both are complex, write 1 = A+ i, = A — iy, then
the general solution is

y(t) = e*(Cy cos pt + Cosin put).

elfn=n=r
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2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,

ay” + by’ +cy =0, a, b, c real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
@ If 1 # rp and both are real, then the general solution is

y(t) = Cret + Gye™t.

@ If 1 # r» and both are complex, write 1 = A+ i, = A — iy, then
the general solution is

y(t) = e*(Cy cos pt + Cosin put).

o If 1 = ry = r (must be real),
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2nd-order Linear Homogeneous ODE: Constant Coefficient

@ How it looks like,

ay” + by’ +cy =0, a, b, c real numbers

o Characteristic equation
ar’> + br+c=0.

Denote by r1, r» the two roots.
@ If 1 # rp and both are real, then the general solution is

y(t) = Cret + Gye™t.

@ If 1 # r» and both are complex, write 1 = A+ i, = A — iy, then
the general solution is

y(t) = e*(Cy cos pt + Cosin put).
e If 1 = ry = r (must be real), then the general solution is

y(t) = Gre™ + Gote™.
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2nd-order Linear Homogeneous ODE: General Theory

@ Standard form

Y'(t) + p(t)y'(t) + q(t)y(t) = 0
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2nd-order Linear Homogeneous ODE: General Theory

@ Standard form

Y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Principle of superposition:

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 10 / 13



2nd-order Linear Homogeneous ODE: General Theory

@ Standard form
yY'(8) + p(t)y'(t) + q(t)y(t) = 0

@ Principle of superposition: If functions y;(t), y»(t) are solutions to
this ODE,
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@ Standard form
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2nd-order Linear Homogeneous ODE: General Theory

@ Standard form
yY'(8) + p(t)y'(t) + q(t)y(t) = 0

@ Principle of superposition: If functions y;(t), y»(t) are solutions to
this ODE, then for any number A B,

Ay1(t) + Byo(t)
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2nd-order Linear Homogeneous ODE: General Theory

@ Standard form
yY'(8) + p(t)y'(t) + q(t)y(t) = 0

@ Principle of superposition: If functions y;(t), y»(t) are solutions to
this ODE, then for any number A B,

Ay1(t) + Byo(t)

is a solution.

10 / 13
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition,
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian

W (y1(t), y2(t)) = y1(t)ys(t) — y2(t)yi(t),
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@ In addition, if the Wronskian
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian

W (y1(t), y2(t)) = y1(t)ys(t) — y2(t)yi(t),

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of
this ODE looks like
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian

W (y1(t), y2(t)) = y1(t)ys(t) — y2(t)yi(t),

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of
this ODE looks like

An(t) + Bya(t)
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian
W(yi(t), y2(1)) = y1(t)ys(t) — y2(t)y1 (1),

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of

this ODE looks like
Ayl(t) + Byg(t)

for some number A, B.
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian
W(yi(t), y2(1)) = y1(t)ys(t) — y2(t)y1 (1),

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of
this ODE looks like
Ayi(t) + Bya(t)
for some number A, B.
@ In other words, yi(t), y2(t) are linearly independent to each other
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian
W(yi(t), y2(1)) = y1(t)ys(t) — y2(t)y1 (1),

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of
this ODE looks like

Ayl(t) + Byg(t)
for some number A, B.

@ In other words, yi(t), y2(t) are linearly independent to each other and
forms a fundamental set of solutions.
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian

W(yi(t), y2(1)) = y1(t)ys(t) — y2(t)y1 (1),
as a function of t, is not constantly 0, then ALL THE SOLUTIONS of
this ODE looks like
Ayi(t) + Bya(t)
for some number A, B.

@ In other words, yi(t), y2(t) are linearly independent to each other and

forms a fundamental set of solutions. The general solution of this
ODE
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2nd-order Linear Homogeneous ODE: General Theory

@ In addition, if the Wronskian

W(yi(t), y2(1)) = y1(t)ys(t) — y2(t)y1 (1),
as a function of t, is not constantly 0, then ALL THE SOLUTIONS of
this ODE looks like
Ayi(t) + Bya(t)
for some number A, B.

@ In other words, yi(t), y2(t) are linearly independent to each other and
forms a fundamental set of solutions. The general solution of this
ODE would then be

y(t) = Gun(t) + Gya(t).
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0
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y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation,
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).
@ In particular, if you already know one solution y1(t),
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + a(t)y(t) =0
@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + a(t)y(t) =0
@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)yi(t)

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 12 /13



Reduction of order
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y'(t) + p(t)y'(t) + a(t)y(t) =0
@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let y»(t) = v(t)y1(t) and plug it into the ODE,
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0
@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).
@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book,
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0
@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).
@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

n(E)V'(t) + (2y1(t) + p(t)y(1))V'(t) = 0.

Treating it as an ODE concerning v/(t),
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

n(E)V'(t) + (2y1(t) + p(t)y(1))V'(t) = 0.

Treating it as an ODE concerning v/(t), you can solve it by separation
of variable.
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

n(E)V'(t) + (2y1(t) + p(t)y(1))V'(t) = 0.

Treating it as an ODE concerning v/(t), you can solve it by separation
of variable. (Note that v"(¢t)/v/(t) = (In(v'(t))’)
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

y(E)V'(t) + (2y1(t) + p(t)ya(£))V'(t) = 0.
Treating it as an ODE concerning v/(t), you can solve it by separation
of variable. (Note that v"(¢t)/v/(t) = (In(v'(t))’)
@ Then you get v/(t)
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

y(E)V'(t) + (2y1(t) + p(t)ya(£))V'(t) = 0.
Treating it as an ODE concerning v/(t), you can solve it by separation
of variable. (Note that v"(¢t)/v/(t) = (In(v'(t))’)
@ Then you get v/(t) and by integration you get v(t)
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

y(E)V'(t) + (2y1(t) + p(t)ya(£))V'(t) = 0.
Treating it as an ODE concerning v/(t), you can solve it by separation
of variable. (Note that v"(¢t)/v/(t) = (In(v'(t))’)
@ Then you get v/(t) and by integration you get v(t) and thus
y2(t) = vt)yi(t)
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Reduction of order

@ Standard form

y'(t) + p(t)y'(t) + q(t)y(t) = 0

@ Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y;(t) and y(t).

@ In particular, if you already know one solution y;(t), it suffices to use
reduction of order to find another y»(t).

o Let yo(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

y(t)V"(t) + (2y1(t) + p(t)ya(t))V'(¢) = 0.
Treating it as an ODE concerning v/(t), you can solve it by separation
of variable. (Note that v"(¢t)/v/(t) = (In(v'(t))’)
@ Then you get v/(t) and by integration you get v(t) and thus
y2(t) = v(t)y1(t) and thus the general solution

y(t) = Cun(t) + Goya(2)-
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